Safezone 222-PT Specification Sheet

Safezone 222-PT Filtered Far UVC **Excimer Lamp Surface Mount**

UVC Cleaning Systems Inc. is introducing the Safezone222-PT UV device. The Safezone222-PT is our pendant mounted filtered 222nm Far UVC solution for microbial pathogen reduction applications. With optimal mounting flexibility the Safezone222-PT product is highly effective at pathogen reduction in numerous areas and applications.

Featuring Care 222® Krypton-Chloride excimer UV modules that can safely be used in occupied spaces without posing health risks to humans, the Safezone222-PT system needs to be part of your disinfection process. The 222nm Far field UVC revolution is setting a new standard in microbial virus and bacterial reduction that you never dreamed of before!

FEATURES & BENEFITS

- iOS App Store Compliant
- Meets ACGIH® UV Exposure Limits.
- Flexible Mounting on Vertical Surfaces
- Simple Lamp Mounting Options
- Care222® Patented Safety Filter Technology Included to Ensure Narrowband 222nm Emission
- Mercury Free Environmentally Friendly
- Effective Germicidal Wavelength to Eliminate Dangerous Pathogens
- Effective Reduction of Viruses, Bacteria, and Spores
- Instantaneous On/Off at Full Output Power, No Lamp Degradation
- No Lifetime Instantaneous On/Off at Full Output Power

APPLICATIONS

• Surfaces • Air

Safezone222-PT

UVC Output/Beam Angle:

14 uw/cm2 @ 1meter/ 60 Degree

Efffective Against: Bacteria, Mold, Yeast, and Virus

Electrical: 120-277 VAC, .5 AMPS, 50/60 Hz

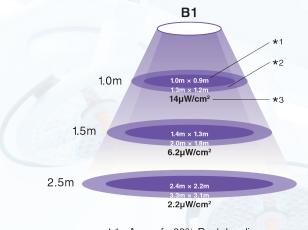
Dimensions: 9"H x 6 1/2"W x 6 1/2"D

Weight: 7 lbs. 0 oz.

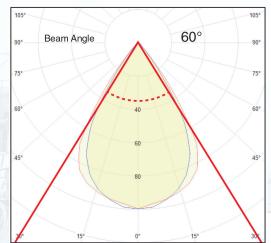
Complies with us ANSI/UL/CSA 8802 E115876 UL 1598 / CSA C22.2#250.0

USHIO

EPA Est.



Phone: 810-358-7202


E-mail: customerservice@uvc-inc.com

Safezone222-PT Specification Sheet

Irradiance Distribution

- *1 Area of >60% Peak Irradiance
- *2 Area of >30% Peak Irradiance
- *3 Peak Irradiance

Safezone222 Top View

Safezone 222 Bottom View

Product Name
Wavelength
Beam Angle
Optical Filter
Optical Diffuser
Output (Center Irradiance @1m)
Electrical Input (Inverter)
Power Consumption
Operating Voltage
Average Rated Lamp Life
Dimensions (in)

30
Safezone222-PT
Filtered 222nm
60°
Yes
No
14uW/cm2
120-277 VAC, .5 AMPS
20W
4kV – 6kV
10,000hr (80% Output)
9"H x 6 1/2"W x 6 1/2"D

Regulatory Approvals and Partnerships:

USHIO #

EPA Est. #91447-MI-2

Phone: 810-358-7202

E-mail: customerservice@uvc-inc.com

Safezone222-PT Specification Sheet

Domain				Methods ¹⁻⁷			
Dullialli	25	Species	222nm	254nm	70% ethanol	405nm	
	MRSA (Methicillin-Resistant Staphylococcus aureus)		+++	+++	+++	+	
	Pseudomonas aeruginosa		+++	+++	+++	+	
	Escherichia. coli 0157		+++	+++	+++	+	
	Salmonella Typhimurium		+++	+++	+++	+	
Bacteria	Campylo <mark>bac</mark> ter jejuni		+++	+++	N.D.	+	
Back	Bacillus cereus	Vegetative cell	+++	+++	++	+	
		Spore	+++	++	_	_	
	Bacillus subtilis	Vegetative cell	+++	+++	N.D.	+	
		Spore	+++	++	N.D.	_	
	Clostrium difficile	Spore	+++	++	_	_	
	Candida albicans		+++	+++	+++	+	
lolds and Yeasts	Penichillium expansum		+++	+++	N.D.	+	
Molds and Yeasts	Aspergillus niger	Vegetative cell	+	+	+++	+	
		Spore	+	+	N.D.		
Virus	MS2		+++	+++	N.D.	_	
	Feline Calicivirus		+++	+++		_	
	Influenza A		+++	_+++	N.D.	20/	
	SARS-CoV-2		+++	+++	N.D.	64	

Table X, Inactivation effect of 222-nm, 254 nm UVC irradiation and 70% ethanol on the various species. Dose of UVC radiation to achieve 3-log reduction of the species is grouped as follows.<50 mJ/cm²: +++, ~100 mJ/cm²: ++, ~1000 mJ/cm²: -. Treatment time with 70% ethanol to achieve 3-log reduction of the species is grouped as follows. <10 sec: +++, ~20 sec: ++, ~30 sec: +, >30 sec: -. N.D. means no data. The data shown in green were studied and provided by Ushio Inc.

Reference

- 1. CM Springorum et al., Conference: XIV international congress of the International Society for Animal Hygiene, At Vechta, Volume: 2, Page 740-742, 2009
- 2. D Wang, T Oppenländer, MG El-Din, and JR Bolton, "Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm," Photochem. Photobiol., vol. 86, no. 1, pp. 176–181, 2010.
- 3. A. N. Edwards, S. T. Karim, R. A. Pascual, L. M. Jowhar, S. E. Anderson, and S. M. McBride, "Chemical and stress resistances of clostridium difficile spores and vegetative cells," Front. Microbiol., vol. 7, no. OCT, pp. 1–13, 2016.
- S. E. Beck, H. B. Wright, T. M. Hargy, T. C. Larason, and K. G. Linden, "Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems," Water Res., vol. 70, pp. 27–37, 2015.
- 5. J. C. Doultree, J. D. Druce, C. J. Birch, D. S. Bowden, and J. A. Marshall, "Inactivation of feline calicivirus, a Norwalk virus surrogate," J. Hosp. Infect., vol. 41, no. 1, pp. 51–57, 1999.
- 6. Kitagawa, et al.(2020) DOI: https://doi.org/10.1016/j.ajic.2020.08.022.
- 7. Welch, et al., Sci. Rep. 8, 2752 (2018). Buonanno, et al., Sci. Rep. 10, 10285 (2020).

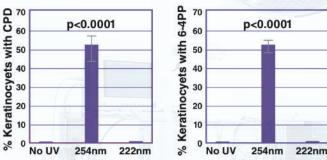
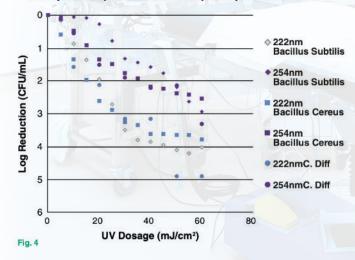
Phone: 810-358-7202

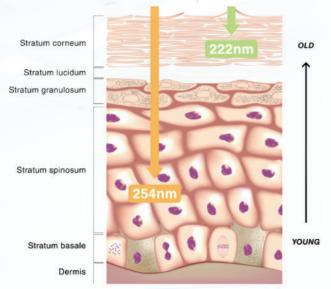
E-mail: customerservice@uvc-inc.com

Safezone222-PT Specification Sheet

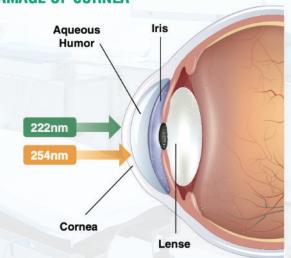
UV-C COMPARISON STUDIES

Fig. 1 Comparison of cross-sectional images of UVC-induced premutagenic skin lesions CPD (cyclobutane pyrimidine dimers) and 6-4PP (photoproducts) in the dorsal epidermis of mice. A UV dose of 157 mJ/cm2 was used for both 254 and 222 nm¹.


Fig. 2 & 3 Average percent of keratinocyte cells exhibiting dimers (Fig 2. - right CPD; Fig 3. - left 6-4PP) measured in UVC-induced premutagenic DNA lesions in nine randomly selected fields of view per mouse (n=3)¹.

Comparison (254nm VS 222nm) for Spore Inactivation²


SKIN ABSORPTION SHOWING 222nm VS. 254nm

Structure of the Epidermis

Light at 222nm far UV-C is absorbed by the Stratum corneum (dead skin cells)

DAMAGE OF CORNEA

Unlike conventional UV light, 222nm far UV-C is absorbed in the tear layer of the cornea and is much less likely to cause eye damage.³

All safety testing was done with Ushio's proprietary filter technology to provide only narrowband 222nm light emission.

References:

- ¹ Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.. Germicidal Efficacy and Mammalian Skin Safety of 222nm UV Light. Radiation Research. 2017 April; 187(4): 483-491.
- ² Ushio Inc. Internal Data
- ³ Kolozsvári, Lajos; Nógrádi, Antal; Hopp, Béla; Bor, Zsolt. UV Absorbance of the Human Cornea in the 240- to 400-nm Range. Investigative Ophthalmology & Visual Science July 2002, Vol.43, 2165-2168.

Phone: 810-358-7202

E-mail: customerservice@uvc-inc.com